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The method of tunneling currents is applied for study of electron-tunneling dynamics in quasi-one-dimensional
donor-bridge—acceptor systems in which the bridge is composed of a sequence of atoms located on a straight
line connecting donor and acceptor complexes. Such a system provides a simple model for the description
of electronic processes in molecular wires. Of our particular interest are the following questions: how exactly
does an electron tunnel through an atom or a molecule, and what is the precise meaning of “through-bond”
and “through-space” tunneling, the concepts frequently used in the description of electron tunneling in proteins.
Our method consists of an ab initio electronic structure calculation of the spatial distribution of tunneling
currents occurring during the tunneling transition in the system, when an electron tunnels from the one end
of molecular wire to the other. The analysis is based on calculation of two diabatic electronic states
corresponding to localization of a tunneling electron on donor and acceptor sites, respectively. All electrons
in the system are taken into account at the Hartiéeck level, and as such the method allows us to examine

the reaction of the valence electrons on the bridge to the tunneling charge. The symmetry of the chosen
system allows a relatively simple way for a complete and detailed analysis of the spatial distribution of the
currents in the system. These results provide new insights into the nature of long-distance electron tunneling

in organic media.

Introduction not overlap, but instead there is a sequence of overlapping

. . » ) orbitals owing to bridging atoms that results in an effective or
Long-distance tunneling is a critical step in electron-transfer superexchange coupling.

reactions in many donetbridge—acceptor systems. Important
examples include, for example, electron transfer in proteips,
electron tunneling in molecular monolayers in STM experi-

The absence of intermediate resonances and sequential nature
of the coupling of virtual bridging states makes the process of

_ . . . lectron exchan in h ntiall ivalen
ments3~8 and electronic processes in molecular assemblies that® ectron exchange such a case essentially equivalent to

are studied as prototypes of molecular electronic devicés. semiclassical tunnellng.. i . o
concept of molecular wire is often used in molecular electronics N recent years detailed experimental studies of biological
studied® when referring to a single, usually long, molecule electron t_ransfer have stlmulateql advanced theoretical a_naly_S|s
connecting distant donor and acceptor complexes that exchang®f long-distance electron tunneling (see e.g., recent review in
an electron in thermal or photoexcited reactions. The nature fef 15 and references therein). As a result, the fundamental
of electron transport in such systems is of great universal idea of superexchange electronic coupling of distant donor and

interest, and it has therefore been the subject of active acceptor complexes has now acquired a remarkable degree of
experimental and theoretical studies in the past. sophistication. Current theories are able to account for structural

and dynamicaf features of the bridging medium between donor

The fundamental principles of long-distance electronic cou- e .
and acceptor at the level of individual atoms and provide the

pling in molecular bridged systems were discovered in the early ] o . X )
1960s!! In the most common case, donor and acceptor basis for quantitative angly&s of structuffeinction analysis
localized electronic states are the only states that are mixed af electron-transfer proteiris.

the reaction proceeds; i.e., there are no other states that ever Most of the theories of electron transfer in proteins, however,
get resonant with these two. An electron therefore can resideare based on a one-electron picture, owing to the enormous
on either the donor or the acceptor states, and all intermediatecomplexity of the probler®17-33 Smaller systems, on the other
states for a tunneling electron are virtual. (This is by no means hand, have been successfully studied using the many-electron
the only possible mechanism for long-distance charge transfer;quantum chemistry approaéh,3’ and currently efforts are

for discussion of other models see, e.g., ref 12.) The mixing underway to develop many-electron theories for protéins.
occurs, according to fundamental postulates of electron-transfer In refs 39 and 40, the method of interatomic tunneling currents
theory!314 when donor and acceptor states are brought into for the description of long-range electron transfer in proteins
resonance in a suitable thermal fluctuation of nuclear coordinateswas introduced. This theory provides an efficient solution both
of the system and because of the nonzero quantum mechanicajor the problem of finding which atoms in the intervening
coupling of two states. This coupling, however, is not direct, medium between donor and acceptor, and to what extent, are
since electronic orbitals of donor and acceptor complexes doimportant in the tunneling process (tunneling pathways), and
for the problem of evaluation of the magnitude of superexchange
* Corresponding author. tunneling matrix element (electronic coupling) for bridge-
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mediated electron-transfer reactions. In a recent Wbtke hermitian symmetrization of the classical expression makes the
formulation of the theory was extended to include the many- current density operator hermitian. The hermitian conjugated
electron description. operatorf;” is assumed to be acting on the left. The total

The method of atomic currents can be applied for the analysis coordinate representation of the above expression thus has the
of electron tunneling in proteins, such as Ru-modified blue following form:
copper azurin and cytochrome molecules from recent experi-
mental studies of Gray and co-worké%sor for the description N 9 g
of electron transfer in molecular monolayers in STM experi- f(x) = —z O(X = X)— — —0O(X — ) (2.3)
ments3~8 The structure of the tunneling flow in the intervening 2mi4 % 0%
medium at the atomic level of resolution can provide an

important insight into the details of the mechanism of long- Thys, the current density has the form of a one-electron operator.

distance tunneling. _ _ _ In the same representation the electron density operator reads
In this paper the method of tunneling currents is applied for

study of electron-tunneling dynamics in quasi-one-dimensional N

donor-bridge—acceptor systems that provide a model for the f)(x) = Zé(x — ) (2.4)
description of electronic processes in molecular wires. Of our |

particular interest are the following questions: how exactly does

an electron tunnel through an atom or a molecule, and what iswhich is a one-electron operator as well. We can now apply
the precise meaning of “through-bond” and “through-space” the standard technique to calculate matrix elements of these
tunneling, the concepts frequently used in the description of gperators for many-electron wave functions.

electron tunneling in proteins. Our method consists of an ab |, ref 41 the second quantization method was used for the
initio elegtronlc structure caliculat|o[1 of the spathl dlstrlbu.tl'on analysis of tunneling currents. It can be shown that the above
_of tunneling currents occurring during the tunneling transition operators and the current density operator discussed in ref 41
in the system, when an electron tunnels from the one side of ;.4 the same. For example, applying the standard technique of

th? nrollecula:cr wired.tob the olther. The analysis is bazgd ON the field operatorg)(x) andy(x) (see, e.g., ref 42) the above
caicu atlpn of two |a'at|c electronic states correspon ing to operators can be rewritten in second-quantized form as
localization of a tunneling electron on donor and acceptor sites,

respectively. All electrons in the system are taken into account N . N

at the Hartree Fock level, and as such the method allows us P =15 () ¥,(9

to examine the reaction of the valence electrons on the bridge

to the tunneling charge. The symmetry of the chosen systemand

allows a relatively simple way for a complete and detailed

analysis of the spatial distribution of the currents in the system.

The results reported below provide new insights into the nature

of long-distance electron tunneling in organic media. Also,

using the method described in this paper, the quality of the one-where summation is assumed over the repeating spin index

electron approximation can be evaluated quantitatively. Thus, the current density discussed in this paper and in ref 41
The paper is structured as follows. In the next section we are the same; however, the mathematical formalism of second

introduce and discuss many-electron density and current densityquantization required for treatment of the above expressions is

operators and show how tunneling dynamics can be analyzedquite different from that of the present paper.

with these' operators. Ir! section 3 main approximations 5 5 Tunneling Dynamics in Terms ofj(x). The idea of

employed in the calculation of donor and acceptor wave - method is to examine spatial distribution of the current

functions are discussed. In section 4 examples of calculatlonsdensity in a tunneling transition. Suppose two resonant diabatic

of tunneling currents in various model systems are presented.g|actronic statesDOand |ACcorresponding to localization of
Section 5 closes the paper with some additional discussion andy,o tunneling electron on the donor and on the acceptor

(2.5)

T00 = -0V, ~ DRIV D) (2.6)

conclusions. complexes, respectivef,are coupled by the transfer matrix
4
2. Current Density in a Tunneling Transition element
2.1. Current Density Operator. The current density dfl D|H|ALO- EgSoa
classical particles with coordinategt) moving with velocities Y N —-— (2.7)
u(t) = x(t) is given by 11—

N whereH is many-electron Hamiltonian of the system at fixed
)= za(x — X)y; (2.1) nuclear coordinate§pa = D|ALIs the overlap of the two states,

! andEy, = (D|H|DO= [A|H|Alis a common resonance energy
of states D and A. It is assumed that all other electronic states
are far from D and A states in energy, so that only two states
are involved in mixing and in dynamics.

The quantum generalization of the above equation results in
the following expression for theperatorof current density

N ” At Then, if initially the tunneling electron is localized in the
a1 S(x — E n _i(g _ 29 donor state|DL] later in time the total electronic wave function
jx) = ZZ (x Xi)m m (x =) (2.2) will evolve into a linear combination of staté®Jand |ATas

follows

wherem is the mass of particles, electrons in our case, fand o
is the momentum operator of thth electron, #d/dx. The |W(t)O= cos(Tpat/h) DO i sin(Tpat/R)|AD (2.8)
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We wish to examine current density and electron density in A states then have the following form:
such a state. For local density we find

A ) IDO= |X?(1"'XE&X?[3"'X5/3D (2.18)
p(x, t) = T (1) p()| W(t) O= cosi(6) [D|p(x)| DLH R

sin?(6) (A p(X)|A0(2.9) IALE X 10+ X paX 15+ AqpD (2.19)

where Using standard rules for matrix elements of one-electron
operators? we have
o= 1or (2.10) R .
h ' [AIy O()IDC= detSup) H (Supdiojo®}olOlwio0  (2:20)
I

IJ,0

The local density changes in time as follows:

Y Ton i gAT- DpIDISND (211

for any operatof of the form of eq 2.3 or eq 2.4. The overlap
matrix Sap in the above equation is given by

- (S0 = Hioltp0F 0, @nlepd  (2.21)
On the other hand, the local current density in the same state
is The determinant of this matrix is the overlap integral for states
A and D:

JO ) =TW®) ] YPEO)E=ilAj(¥)|DCsin 28 (2.12)
Sip = [A|DO= detS,p) (2.22)

As expected, both density and local current are changing in time

periodically with the same frequencyga/fi. Much computational simplification in the evaluation of the
In both expressions the time dependence is defined by thematrix elements of the form of eq 2.20 is gained if molecular

factor sin 2. The rest of the expression gives an amplitude of qrpjtals 2 and ¢° of corresponding spin orbitals are

oscillation, which as a function of coordinates gives a spatial piorthogonalized* 4’ In this case the overlap matrix of states

distribution of the current/density in the whole system. Using A and D is diagonal

the same notation as in one-electron theory, the spatial part of

the currentJ(x), is introduced as follows: @@KOE;D: 8, (2.23)

jx)=-JKWsin (2.13) and for states witlp orbitals ina spin andq orbitals ing spin

Given this definition, the spatial distribution is

p q
309 = i} (DO (2.14) detSyp) = |T|$ |j_|§" (2.24)
Using the conservation equation for current and
ap(X .5 B o
pa(t )= —av i (9 (2.15) (Sab)iojo = 04 o=, B (2.25)

Using the above results and substituting current operator eq
2.3 for O in eq 2.20 we find the following explicit form for
spatial part of the curren(x) defined in eq 2.14:

and the expressions far(x, t) andj(x, t), we find a relation
between local density and current density in a tunneling system:

T, N N -
o (AIPOJIAC- DpRIDD =dv I(9 - (216) 59— - %det(sm)gs%(fpﬁ,(x)wﬁ,(x) ~ #RXVELM)

Finally, surrounding the donor complex by some closed (2.26)
surfaceSy that will run sufficiently far from it so as to include
most of the charge density corresponding to tunneling electron
on the donor site and integrating the above eq 2.16 over the
volume comprised b, one finds a a useful relation between
tunneling matrix element and current density:

This expression is an obvious generalization of the one-
electron picture. Different pairs of orbitals contribute to current
density. If molecular orbitals in states D and A are biorthogo-
nalized, as we assumed above, currents of pairs of corresponding
(overlapping) orbitals of donor and acceptor states contribute
to current density. The smaller the overlap between corre-
sponding orbitals in donor and acceptor wave functions (i.e.,
the greater the change of an orbital in D and A states), the greater

The same relation was found before in one-electron ap- the contribution of a given pair of orbitals. In most of the cases
proximation3940 Equations 2.14 and 2.17 are most important (but not in all), it should be expected that only one orbital will
relations of this section that are used in our calculations pe significantly different in donor and acceptor states and an

Toa = —H fa)as JX) (2.17)

described in the following sections. electron occupying these orbitals in the initial and final states

2.3. Calculation of J(x). Suppose stateDUand |[AUare of the system will give most of the contribution to the current.
one-determinant many-electron functions, which are written in |t does not mean, however, that other electrons are not important.
terms of (real) molecular orbitats?, and g, with correspond- First of all, other electrons will give some direct contribution
ing spin orbital@g?a andxﬁ,, whereg is the spin indexg = q, owing to electron relaxation effeetsheir orbitals will be shifted

B. These orbitals are the optimized orbitals obtained from to some degree owing to polarization effeetsxd also other
Hartree-Fock (HF) calculations of states D and A. The D and electrons contribute most strongly indirectly since the important
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orbitals are determined self-consistently by all other electrons thaniy, and iy, i.e.

in the system. Finally, many electrons can contribute to current

owing to the exchange effects. min(g — E,p > AE (3.1)

We can now express the currents in terms of the atomic basis
functions of which molecular orbitals are built. Each of the whereE; are energies of some other (excited) electronic states
molecular orbitals are assumed to be found in a HF calculation in the system. It is clear that the condition above can always

as a linear combination of atomic basis set functigps

K

¢E7 = ZD‘Zi uw (227)
u
K

P =D AU, (2.28)
n

whereK is the total number of atomic orbitals in the basis set
of the system.

Then, in terms of atomic orbitals the expression for currents
takes the following form

- h
JX)=— o detSyp) I;BZV(¢ﬂ(X)V¢V(X) — ¢,(0V9,(X)
o (2.29)

where the density matriB;, is defined as follows

(p.a)
Zv = AZi —Dy;

(2.30)

where summations are limited lpyfor a spin and byqg for g
spin.

Using antisymmetry of the above expression (eq 2.29) in
indicesu andv, one finds the final expression for currents

I = I, + Iy

K
G

wy=1

(2.31)

- h
Jo(¥) =~ om detSpa) B3, ()Ve,(x) (2.32)

K
> (B~ Bl)8,MVe,(0 (2.33)

uv=1

- h
Jp(%) = — 51 detSpa)

where detfpa) is given by eq 2.24 an8),
2.30.
Similarly, the overlap matrices can be expressed in terms of

is defined by eq

the overlap integrals of the atomic orbitals. These expressions

have very simple structure and are directly suitable for program-
ming.

3. Choice of Donor and Acceptor Wave Functions
In this section we discuss the approximations employed in

be satisfied at large distances between donor and acceptor since
AE decreases exponentially with the distance.

The precise meaning ¢bOand |AUstates is defined by the
following equations:

|wa|:H— W)bD
|wa|]_ |1/Jb|:|
|AD: T (3.3)

Thus, we assume that at time= 0 a nonstationary state is
created from the two eigenstates of the system. In the systems
of our interest theDOstate will be localized on one end of the
molecule and théAOstate on the other. In the subsequent
evolution fort > 0, the system will experience quantum beats
between states D and A with the frequendp2h, as eq 2.8
states.

We notice thatDOand |AOstates so defined are exactly
orthogonal, owing to orthogonality a&f andb states, and the
tunneling matrix element defined by eq 2.7 is given exactly by

Toa=(E,— B2 (3.4
We assume théd, is the lowest energy ang, is symmetric,
which means that the tunneling matrix element is negative. If,
on the other hand, the antisymmetric state b has the lowest
energy, then the tunneling matrix element is positive. The
currents defined in the previous section will change direction,
which formally corresponds tpACbeing the donor state.

If the statesy, and v, were easily available, then tH®O
and |AOstates could be exactly determined using the above
definition. In fact, for symmetric and relatively simple systems,
such as in the present discussion, the ground and the first excited
state can be found relatively easily. However, in a more general
case the stateg, andyy, are not available (for a simple reason
that the exact configuration of the nuclei and of the external
field resulting at the degeneracy of the donor and acceptor states
is not known), and the value of the tunneling matrix element
cannot be determined using eq 3.4. Hence, in general, the
strategy of calculations is to find an approximation ffofland
|Alstates and then to use eq 2.7 for matrix element evaluation.
These approximate states are in general not orthogonal, and there
exists a small overlafpa between them.

In a general case the approximate method of findidigand
|ADstates would be to consider two different configurations of

the evaluations of the donor and acceptor wave functions andthe system that correspond to an electron localized on donor
several related issues of the numerical accuracy of calculationsand acceptor complexes and then to solve the "Siihger

of the tunneling currents.
All of the calculations discussed in this paper were performed

equation (i.e., to find ground state) separately for both ap-
proximate|DOand |Alstates. Both configurations, of course,

on symmetric systems. In such a case there exist two closelyshould be as close as possible to the actual transition-state

lying eigenstates, which we will calh, andyy, with energies
E, and By, respectively. The state with the lowest energy is

configuration. This method is based on the idea that the
Hamiltonian of the system in the D configuration will be close

the ground state. These two states correspond to the usuato actual Hamiltonian in the region of the donor complex and

symmetric and antisymmetric combinations of the donor and

that of the A configuration will be close to the actual Hamil-

acceptor states, and the splitting between the two states is twicetonian in the region of the acceptor. Then the approximate wave

the value of the couplingAE = |E, — Ed = 2|Tpal. We

functions will be close to what one understands intuitively by

assume that other electronic states are much higher in energydonor and acceptor electronic states.
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The quality of the wave functions in the whole space is an
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less and the barriers are of the order of several electronvolts

important issue since tunneling matrix elements and tunneling and in any caséTpa| << min|Ey — Ej|, this condition can be
currents are exponentially small and hence are expected to besasily satisfied. If the condition 3.9 is satisfied, the calculated

sensitive to minor changes of the Hamiltonian. We therefore
formulate the approximation fotDOand |A states more
accurately.

The exact statgDldefined by eq 3.2 satisfies the following
equation

HIDO= (B ly + w2 (3.5)
which can be written as
H|DC= E|IDCH TpalAD (3.6)
whereE, is the midpoint betweek, and E,
Eap=Eo £ Tpa (3.7

Eo is what is usually assumed by the tunneling energy. This
energy is negative and usually is of the order of several
electronvolts.

properties of the system, such as tunneling matrix elefgant
and others, should be independent of the particular value of

Once the approximate donor and acceptor wave functions are
found, the calculation usually proceeds with the evaluation of
the tunneling matrix element by eq 2.7, where instead of exact
wp andya their approximationsyy andy), are used.

We notice one seemingly striking problem with this method
of evaluation ofTpa. Sinceyy is much different from the
exactyp in the region of the acceptor, ang, much different
from the exactya in the region of the donor, their product is
ill-defined in most of the regions of the space. Sirfigg is
defined by the integral of the product ¢f andy,, one might
ask how is it possible then to get an accurate valudgf
without knowing exact functiongp andya?

Our reformulation of the tunneling problem in terms of the
currents helps to explain the puzzle. Equation 2.17 for matrix
element in terms of the tunneling currehis equivalent to the
conventional formula; however, since it involves only surface

In coordinate representation eq 3.6 can be rewritten asintegral, instead of volume integral as in eq 2.7, it shows that

follows:

(H - TDAwA_(X)) Yp(¥) = Egyp(X)

Vo0 (3.8)

there are significant cancellations in the volume integral and
the net result foiTpa depends only on the value of the donor
and acceptor wave functions and their derivatives on the surface
separating donor and acceptor in the region of the bridge.
The nature of these cancellations is already obvious from eq

The expression in parentheses in the above equation can b&-7- In this equation the volume integral in the region of the

viewed as an effective Hamiltoniatfip for the functionyp. It

is clear that in the region of the dongy is small, of the order
of |Tpa/Eol, while yp is large (order of unity in atomic units).
Tpa itself is very small compared with electronic energies of
H, hence the effective Hamiltoniasp for 1 in the region of
the donor site is indeed close itb Further analysis of simple

acceptor site is zero, since) satisfies the Scligbnger
equation
Hya(X) = Egypp, X € Q4 (3.10)

In the rest of the space, the integrand in the volume integral

1-D models shows that the second term in the effective turns out to be a div of some field (current) and therefore, using
Hamiltonian can be neglected also in the barrier region, and Gauss’ theorem, can be written as a surface integral. The

only in the acceptor well it is of the order &f itself. Hence,
the effective Hamiltonian for exaatp is significantly different
from the original HamiltoniarH only in the acceptor well.
Thus, solving the equation fopy with some effective
HamiltonianHp, which coincides with, or is very close t#l,

cancellations are due to the fact the integrand in the volume
integral has a form of a divergence of some field.

Thus we arrive at a surprising conclusion that the wave
functions that are apparently incorrect in most of the regions
of space can give, nevertheless, an accurate value for the

everywhere in space except in the acceptor well, can give antunneling matrix element. The reason is that the tunneling

accurate representation of the actyg in the region of the

donor and under the barrier, however, not in the acceptor well.

A similar result can be obtained for the effective Hamiltonian
H, and for an approximate functiogj,.

In our calculations and in earlier work of Newfdnthe
effective Hamiltoniandd, andH), were obtained by applying

matrix element is determined only by the values of the wave
functions in the narrow region under the barrier, where our
procedure for evaluation oboth functions vy, and v} is
sufficiently accurate.

In our calculations a weak electric fietdwas applied to the
system; two opposite directions of the applied field resulted in

an external electric field directed along the line connecting donor two ground states that are localized on the two atoms on the
and acceptor atoms. This field breaks the symmetry of the gpposite sides of the molecules and have exponential tails
system and leads to localization of the electron on donor or extending into the bridge. These two states correspond to donor
acceptor sites. The field in this case should be sufficiently and acceptor. This procedure results in molecular orbitals of
strong to decouple states D and A and to prevent their mixing, p and A states, which are then biorthogonalized. After that

but not too strong to prevent the change of the potential barrier cyrrent density was calculated as described in the previous

separating the donor and acceptor wells. Specifically, the section. The wave functions were determined using GAUSS-
condition can be formulated as follows IAN-94 electronic structure prograffl.

| Toal < €€l < min|Ey — E| (3.9)

4. Numerical Examples of Current Density Calculations
wheree is the electron charge,is the intensity of the applied In this section we present results of calculations of tunneling
field, andLpa is the distance between donor and acceptor atoms currents in several model resonant charge exchange systems
(or complexes). The right-hand side of this inequality is the M—(B;...B,)—M™. Each of the systems consists of an atom M
minimum distance between tunneling energy and excited statesexchanging an electron with its ioniand M and M are

on the bridge. Since the tunneling matrix elements of our separated by a linear array of additional atoms.B, (or ions)
interest are of the order of hundreds of inverse centimeters orlocated on the straight line connecting M and MThe atoms
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[H -H]* two basis sets together could cover the whole range between
donor and acceptor. One should remember, however, that the
YN ARE RARE RARE AR AR RARN LARE LALE LALE RAR- donor and acceptor wave functions that we are usipig,,
8 04 3 E give poor approximation for the exact functions in the vicinity
o Tk 3 of the partner’s well, as discussed in the previous section. In
»p 02F E a separate calculation, by directly evaluating symmegtgieand
0.0E antisymmetricy, states, we have checked that indeed this is
06 F the case.
9 04 The behaviors of the wave functions in the whole range
<'uh° 02 between donor and acceptor are important since the current at
o5 a given point in space is determined by the product of one
00 e+ function and the derivative of the other at that point. The
_ 8107 features of the tails of the wave functions are too small to be
2 ax107 noticeable in Figures 1a,b.
(:;o 0 Figure 1c shows seemingly irregular behavior of the current
=2 in the vicinity of each of the nuclei. The irregularities are due
= axio7 to different Gaussians with large exponents covering the very
NP U T T SN P I I T T core region of the nuclei. It should be recalled that the current
8x10e ¢ in this region is not well-defined, because of the problem with
ox106 E the tails of the wave functions (in the very vicinity of the other
"o ; well) discussed above.
< xio® On the other hand, in the regidretweenthe two protons,
= ok i.e., under the barrier, the tails of our wave functions, as well
ST TP T/ TP TP RN TP T IR TP as their multi-gaussian representation, is of satisfactory quality.

10 8 -6 -4 -2 0 2 4 6 8 10 The evidence for this comes from Figure 1d, which shows the
Z coordinate, A behavior of the total current as a function of theoordinate.
Figure 1. (a, b) Donor and acceptor wave functions (along the T_he key test Of_the_ quality of our results for cu_rrent in the
internuclear axis) in the H system. The states were localized by [€gion of the barrier is based on our eq 2.16, which seems to
applying an electric field along the symmetry axis of the molecule. b€ of fundamental importance. It states that the divergence of
Donor and acceptor are separated by 8 A. An optimized basis set wasthe tunneling current density at a given point is proportional to
used (see text). (c) Current density fof Hlong the internuclear axis.  the differential density of donor and acceptor states at that point,
(d) Total flux as defined by eq 4.1. with the tunneling matrix elemeffba being the proportionality
coefficient. The right- and the left-hand sides of this equation
between donor M and acceptorMlay the role of the bridge.  can be calculated for arbitrary functions andya; however,
Our goal here is to examine tunneling currents in such systemsit is only when these functions are exact donor and acceptor
using the method discussed in the previous sections and tostates, in the sense discussed in the previous section, that the
answer few principal questions, such as the following: (1) how right- and the left-hand sides will coincide at all points in space.
does a resonant exchange between many-electron atoms/ions We notice that one side of this equation containing differential
occurs through space; (2) what exactly happens when an electroryjensity is everywhere well-defined, even with our approximate
tunnels through an atom of the bridge or a series of the atomsfunctions, while the other is not. The reason for that is that in
in the bridge, and (3) how accurately can one describe the tailsthe very vicinity of the either of the nuclei, where the problem
of the atomic wave functions that one needs for the description with the tails of the wave function arises, the large and well-
of tunneling currents with the methods of quantum chemistry, defined density, sayP, is so much greater than the small and
i.e., using standard Gaussian basis functions. ill-defined counterpartp®, that the value of the differencg®
4.1. Tunneling through SpaceWe begin the discussion of ~ — pA is completely defined only by the large and well-defined
the numerical results from the simplest case of a system of two term (order of unity). On the other hand, the side of the equation
protons exchanging an electron. (Foj Kystem, there exist  containing currents is much more sensitive to the quality of the
an analytical solution, and the accuracy of numerical calcula- wave functions. The small paramet&ps determines the
tions, as well as the quality of some approximations, can be magnitude of the numerical values that are compared in the
easily evaluated.) The distance between the protons was choseright- and the left-hand sides of the equation.
to be 8 A. The main challenge in this system was to optimize  Instead of checking balance of the right- and the left-hand
the Gaussian basis to cover such unusually large distances. sides of eq 2.16 everywhere in space, we examine this equation
Figure 1 shows donor and acceptor wave functiams,, in its integral form. If we integrate eq 2.16 over the volume of
current density,J(2), and the total flux|(2), along thez-axis half-space limited from thew side by a plané, perpendicular
connecting the two ions of }'—|system. The total flux, or total ~ to thez-axis
current, is the integral of the current densityover the plane

. _ . . . . T s
perpendicular to the-axis and crossing it at poirzt @)= — %IMdU(PD(T‘) _ pA(X(')) 4.2)
@)= '[Sz $J(X) = ffdxdy L%y, 2) 4.1) where pA(X) and pP(X) are electron densities in the A and D

states andi(2) is the total current though the surface defined by
The basis set was optimized (by minimizing the energy of eq4.1. We assume that the donor is placed at negafiveA

donor and acceptor states) and contained eight s-, three p-, anéh Figure 1) and the acceptor is at positwalong thez-axis.

one d-Gaussian shells. The largest exponent was approximately The qualitative analysis of eq 4.2 is straightforward. In the

2.5 x 1(? and the smallest one 0.05. Thus, in principle, the vicinity of the donor site, the donor density always dominates
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TABLE 1. Comparison of Tpa Calculated with the [ Na- NaJ*
Tunneling Flux Method and as a Direct One-Half Splitting
of the Symmetric and Antisymmetric States

molecule Toa (cm?) AE/2 (cnr?) N of | e 3
[H—H]* 0.59 0.67 Yo 04 £ E
[Li—Li]* 359.0 447.0 a 0.2 E
[Na—NaJ* 502.0 629.0 < 0.0 E : JIL — 3
ET LI B | LI
over that of the acceptor. Since density is everywhere positive, « 0.6 3 E
the integral in the above equation, as a function of coordinate 0.4 E L E
z, starts from zero atee and reaches its maximum valu€a = 02 3 E
in the region somewhere between donor and acceptor. Further 00F
shift of the planes, toward the acceptor will lead to the opposite 0.0
behavior, and the integral will become again zer@zas . o [ |
For symmetric systems, such as ours, the fundtfgnis even. & 80103 - ¢ ]
In Figure 1d the total curreni(z) calculated by eq 4.1 is f Aaxioz 2
shown. It is seen that the qualitative behavior @ indeed N I ]
corresponds to that described above. The small deviations from ABX102 [ L]
the monotonous behavior that are seen in the figure are due to AL LA
the deviation of our wave functiongy and v}, from their _ 2o0xto3 | .
exact values. As we remarked earlier, there are two sources of —° F d 1
errors in the wave functions. First is that our effective S 1.0x10% F 3
Hamiltonians Hy andH},, employed in calculation ofy and - [ ]
1), are incorrect in the vicinity of the second nucleus. And the oo:---'- N

second is that our Gaussian basis is not capable of capturing 10 8 6 -4 -2 0 2 4 6 8 10
all details of exponential tails of the wave functions in the region 7 coordinate. A
of the barrier. Fluctuations in the region between donor and _. ’ i
Figure 2. (a, b) Donor and acceptor wave functions (along the

acceptor are due to this effect. These fluctuations, however, . o ) s
are relatively smattin the range of 1620%. internuclear axis) in the Nasystem. Details are the same as in Figure

. . . 1. (c) Current density for Na along the symmetry axis of the
Another test of the quality of our calculations is to compare mglecule. (d) Total flux as defined by eq 4.1.

the saturated value of the total current with its theoretical value,
-Tpa. For this end for § and other simple models of this Tunneling Currents in [Na_Na]+
paper, the matrix element was determined directly as half of
the splitting between energies of antisymmetric and symmetric
states of the unperturbed systems (i.e., without an electric field). 15
One state of these two is the ground state, and the other is the
first excited state. The two states were determined in a SCF
procedure in a one-determinant approximation with the same 107]
basis set used for current calculations. We find that the two
matrix elements, one from the direct calculation, another from
the saturated value of the current in the barrier region, coincide
within 10—-20% or better (see below). Results fop Hnd
some other systems are shown in Table 1 and further discussed ]
below. o]

Given the approximate nature of the wave functions, the
agreement within 18620% of these two methods is rather
surprising. Because of the sensitivity of the tunneling matrix
elements to exponentially small tails of the wave functions,
neither method can be regarded a priori as reliable. Comparison
of two completely different methods of calculations sheds some %]
light on the accuracy of such calculations.

In Figure 2 results of similar calculations are shown for the
Na, system. Itis seen that the many-electron nature does not  ~*_ ;" "~ "~~~ T LT T T T T ITTITL
add anything qualitatively new. We have done also similar Figure 3. Distribution of tunneling current density in §laalculated

calculations on Lj. The strongest contribution to tunneling using the standard 6-311G basis set. All units are in bajr Qonor
current in these systems was found to be due to the outermostand acceptor are separated by 7 A.

electron moving in the effective field of nuclei and that of other

electrons in the system. In Figure 3 the distribution of the 2p). The extended basis set gives essentially the same results

tunneling current density for the Blasystem is shown. as 6-311 but with better resolution of small details of the
4.2. Tunneling through a Bridge. How Does an Electron currents.

Tunnel through an Atom? Here we discuss results of our We found that the transition between highest occupied orbitals

calculation of the H-(He),—H™ system, in which two protons  carries most important information about the tunneling process.

exchange an electron via a string of helium atoms. Two basis This is an indication that the one-electron description of the

sets used in the calculations were 6-311G and 6+31G(2df,- tunneling process is in principle possible, provided the interac-
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Tunneling Currents in [H-He-H]" Tunneling Currents in [H-He-H]"
6-311G Basis Set 6—-311++G(2df,2p) Basis Set

8 —— ———t
-8 0 8

-8 T T T T T T T T T T T T T T T
-8 0 8 Figure 5. Same as in Figure 4, but calculated using a 6-315G-
Figure 4. Tunneling currents in a system fHHe),—H]* with one (2pd,2f) basis set.
bridge atomn = 1. Donor and acceptor are separated from the bridge
atom by 2.5 A, Distance dependence of HOMO wavefunction

[H-He, ~H}"
0.0 :

tion of “the tunneling electron” with other electrons (including ‘ ‘ ‘ ‘ V\
/
/\(

the exchange interactions) are properly taken into account. The
internal orbital currents reflect the polarization response to the /‘/
tunneling charge. In the total current, the polarization compo- | /\ﬂ
nent usually masks some important details of the current -100 (
associated with the long-distance electron transfer. We therefore = \/\/

focus in the following discussion on the currents originating 150 |

between the HOMO's of the donor and acceptor states. The /W
biorthogonalization procedure was found to introduce only small
changes of the molecular orbitals since the original orbitals taken /

log(p*p)/a.u.

=200

from the output of the Gaussian calculation already have very
small overlaps; i.e., these orbitals are already almost biorthogo- oy /
nal.
Figure 4 shows distribution of tunneling currents in a system 2000 00 w0 100 00 100 20 300 400
with one bridge atom. The data allows one to gain insight into z-eoordinate/Bobr

the nontrivial question of how exactly a tunneling electron Figure 6. Distance dependence of the donor (acceptor) wave function

penetrates a bridge atom. The results are counterintuitive. Thel” the [H—(Heh—H]" systemn = 11, along the symmetry axis of the
expectation is that owing to the Pauli exclusion principle, the molecule. Donor and acceptor (H atoms) are separated from the bridge

. . " ; . by 2.5 A. He atoms within the bridge are separated by 1.5 A. The total
tunneling electron will try to avoid the repulsive core region of - separation of donor from acceptor atoms is exactly 20 A. The In of the
the bridge atom. However, we find that the very same repulsion square of the wave function decays linearly with distance with a decay

results in antibonding mixing of the wave function of the constant of 0.9 &.

tunneling electron and that of the core and, as a result, leads tovery vicinity of the donor and acceptor atoms. The numerical
a significant current directly through the center of the bridge y41ues of the wave function were verified with two different
atom. Figure 5 shows the same data as in Figure 4 butpgsis sets.
calculated with the extended basis set. Results, as seen, are Figyre 7 shows the total flux through a dividing surface along
essentially identical with those of a more primitive basis set. e axis connecting donor and acceptor atoms in a representative
The polarization currents in the system flow in the opposite system withn = 9. As was explained above in the text, the
direction to that of the tunneling electron. These currents are nonmonotonic behavior of this function is in part due to the
localized on the atoms of the bridge and are due to a “shift” of deviation of the wave functions found in the variational
electron density on these atoms resulting from the long-range procedure from those that are exact solutions of the Samhger
Coulombic interaction with the tunneling electron. equation. the most important part of the flux dependence shown
In Figure 6 the initial wave function of the tunneling electron in Figure 7 is roughly in the middle of the bridge. According
is shown for a H-(He),—H™ system withn = 11. A perfect to theory presented above, the saturated value of the flux in the
exponential decay of the amplitude of the initial function on region between donor and acceptor should coincide with the
the bridge atoms with increasing distance is worth noticing. Such value of the tunneling matrix element, eq 2.17. In Figure 8 a
a perfect exponential dependence with distance obviously is acomparison is shown of the matrix elements calculated with eq
result of the homogeneous (and periodic) nature of the bridge.2.17 with those directly evaluated by the splitting of the
It is interesting that the boundary effects show up only at the symmetric and antysymmetric states in the unperturbed system.
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Total flux along the molecular axis [H-He,-H]" Tunneling Currents iIl [H_Hell_H]+

2.0e-07

—— HOMO (Pre-Biorthogonalization) 22 ]
HOMO (Post-Biorthogonalization) 201

1.5e-07
i

1.0e-07

5.0e-08

I(z)au.

0.0e+00

-5.0e-08

-1.0e-07 L L L L L I .
-40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0

z—coordinate/Bohr
Figure 7. Total tunneling flux along the molecular symmetry axs,
in the [H—(Hex—H]* system. Here the system is composed of a nine-
atom helium bridge separated by 1.5 A and coupled to donor and
acceptor H atoms at a distance of 2.5 A. The flux was calculated using
HOMO before (solid line) and after (dashed line) the biorthogonaliza-
tion.

1074

207

Ty, Dependence on Number of Bridge Atoms b2 L AL B L B B L
[H-He -H]" =20 -10 0 10 20 22

‘ ‘ Figure 9. Tunneling currents for a system with an 11-atom bridge.

Donor and acceptor (H atoms) are separated from the bridge by 2.5 A.

|\ He atoms within the bridge are separated by 1.5 A. Here the donor is

' |

at the bottom of the figure. All length units are in bohg)(aThe

00 | extended 6-311 basis set was used.

from the results of the calculations that a string of 11 He atoms
can propagate the tunneling electron over distances as large as

-12.0 -

log(T},,*T ), )/a.u.

~140 | ] 20 A. This remarkable phenomenon is most clearly presented
in Figure 9 where almost a constant stream of the tunneling
-160 | 1 current from donor to acceptor through the bridge of 11 atoms
@ HOMO (Pre-Biorthogonalzation) is clearly seen. Such tunneling streams obviously exist in
O L g e ] electron-transfer proteins and make what is called the “tunneling
00 L pathways™’
2 3 4 5 6 7 8 9 10 1" 12

Number of Bridge Atoms
) . . . 5. Conclusion
Figure 8. Distance dependence of electronic coupliiag in [H—(Heh—

H]* system withn = 3-11. Two filled symbols correspond to We have presented the first full ab initio implementation of
calculations using the theory of the present paper. Squares and circlespe method of tunneling currents for the description of long-

correspond to results obtained with and without biorthogonalization of . ) - .
molecular orbitals of donor and acceptor states. The open trianglesdlswnce elect+ron transfer reactlon.s. Results were obtained for
[H—(He}—H]™ model systems, witm = 0—11. These and

correspond to calculated electronic coupling using the direct method '
of evaluating the splitting between symmetric and antisymmetric states. Other systems that we have examined allow us to draw the

The distance dependence of the coupling is exponefftial= A exp- following conclusions. The method is capable of providing new
(-p+R/2). The attenuation factor of the coupliig= 0.9 a™*, which is insights into the process of long-distance tunneling with its
the same as that of the wave function, Figure 6. detailed, essentially subatomic, description of the tunneling

As is seen from the figure, there is a perfect agreement betweerprocess. A satisfactory description of the through-space tun-
calculated values of the matrix elements with two totally neling currents over distances up& A can be achieved with
different methods. For a system of 11 bridge atoms, the splitting specially optimized basis sets. In calculations of through-bond
of symmetric and antisymmetric states was so small that it was interatomic tunneling currents, when the distances between
not possible to determine it within the numerical accuracy of atoms is in the range of 1:3.5 A, standard basis sets can be
the energy calculations. Yet the method based on eq 2.17 stillused. The tunneling currents consist of the contribution of the
was able to yield the magnitude of the tunneling matrix element, donor and acceptor highest occupied molecular orbitals and the
which apparently is in line with the other calculations shown polarization currents originating from the other orbitals in the
in this figure. The perfect exponential dependence of the system. An excellent agreement of the method of tunneling
tunneling coupling in these linear systems is in agreement with currents with the results of direct evaluation of the transfer
the expected behavior. matrix element is obtained when the currents of the HOMO's
It is worthy to mention that the tunneling matrix element in are used in the calculation. The biorthogonalization of the
H—(He),—H™* systems is positive. That is, the ground state orbitals of donor and acceptor states does not change signifi-
HOMO is antisymmetric. It appears at a first glance that the cantly results of the calculations.
wave function antisymmetry means that the He atoms would The method described in this paper provides a detailed
try to block the tunneling electron, and yet it is clearly seen description of electron delocalization dynamics and as such can
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be a useful tool in the analysis of long-distance electron
tunneling in proteins or in other organic materials with complex
structural organization. In particular, the quality of the previous

one-electron theories will be possible to test now against ab

initio calculations of the tunneling pathways. Also, the effect
of dynamicdf and disorde¥ of protein matrix on long-distance
tunneling in biological systems will now be possible to address
at a more accurate level of calculations.
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