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The method of tunneling currents is applied for study of electron-tunneling dynamics in quasi-one-dimensional
donor-bridge-acceptor systems in which the bridge is composed of a sequence of atoms located on a straight
line connecting donor and acceptor complexes. Such a system provides a simple model for the description
of electronic processes in molecular wires. Of our particular interest are the following questions: how exactly
does an electron tunnel through an atom or a molecule, and what is the precise meaning of “through-bond”
and “through-space” tunneling, the concepts frequently used in the description of electron tunneling in proteins.
Our method consists of an ab initio electronic structure calculation of the spatial distribution of tunneling
currents occurring during the tunneling transition in the system, when an electron tunnels from the one end
of molecular wire to the other. The analysis is based on calculation of two diabatic electronic states
corresponding to localization of a tunneling electron on donor and acceptor sites, respectively. All electrons
in the system are taken into account at the Hartree-Fock level, and as such the method allows us to examine
the reaction of the valence electrons on the bridge to the tunneling charge. The symmetry of the chosen
system allows a relatively simple way for a complete and detailed analysis of the spatial distribution of the
currents in the system. These results provide new insights into the nature of long-distance electron tunneling
in organic media.

Introduction

Long-distance tunneling is a critical step in electron-transfer
reactions in many donor-bridge-acceptor systems. Important
examples include, for example, electron transfer in proteins,1-5

electron tunneling in molecular monolayers in STM experi-
ments,6-8 and electronic processes in molecular assemblies that
are studied as prototypes of molecular electronic devices.9 A
concept of molecular wire is often used in molecular electronics
studies10 when referring to a single, usually long, molecule
connecting distant donor and acceptor complexes that exchange
an electron in thermal or photoexcited reactions. The nature
of electron transport in such systems is of great universal
interest, and it has therefore been the subject of active
experimental and theoretical studies in the past.
The fundamental principles of long-distance electronic cou-

pling in molecular bridged systems were discovered in the early
1960s.11 In the most common case, donor and acceptor
localized electronic states are the only states that are mixed as
the reaction proceeds; i.e., there are no other states that ever
get resonant with these two. An electron therefore can reside
on either the donor or the acceptor states, and all intermediate
states for a tunneling electron are virtual. (This is by no means
the only possible mechanism for long-distance charge transfer;
for discussion of other models see, e.g., ref 12.) The mixing
occurs, according to fundamental postulates of electron-transfer
theory,13,14 when donor and acceptor states are brought into
resonance in a suitable thermal fluctuation of nuclear coordinates
of the system and because of the nonzero quantum mechanical
coupling of two states. This coupling, however, is not direct,
since electronic orbitals of donor and acceptor complexes do

not overlap, but instead there is a sequence of overlapping
orbitals owing to bridging atoms that results in an effective or
superexchange coupling.
The absence of intermediate resonances and sequential nature

of the coupling of virtual bridging states makes the process of
electron exchange in such a case essentially equivalent to
semiclassical tunneling.
In recent years detailed experimental studies of biological

electron transfer have stimulated advanced theoretical analysis
of long-distance electron tunneling (see e.g., recent review in
ref 15 and references therein). As a result, the fundamental
idea of superexchange electronic coupling of distant donor and
acceptor complexes has now acquired a remarkable degree of
sophistication. Current theories are able to account for structural
and dynamical16 features of the bridging medium between donor
and acceptor at the level of individual atoms and provide the
basis for quantitative analysis of structure-function analysis
of electron-transfer proteins.15

Most of the theories of electron transfer in proteins, however,
are based on a one-electron picture, owing to the enormous
complexity of the problem.15,17-33 Smaller systems, on the other
hand, have been successfully studied using the many-electron
quantum chemistry approach,34-37 and currently efforts are
underway to develop many-electron theories for proteins.38

In refs 39 and 40, the method of interatomic tunneling currents
for the description of long-range electron transfer in proteins
was introduced. This theory provides an efficient solution both
for the problem of finding which atoms in the intervening
medium between donor and acceptor, and to what extent, are
important in the tunneling process (tunneling pathways), and
for the problem of evaluation of the magnitude of superexchange
tunneling matrix element (electronic coupling) for bridge-* Corresponding author.
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mediated electron-transfer reactions. In a recent work,41 the
formulation of the theory was extended to include the many-
electron description.
The method of atomic currents can be applied for the analysis

of electron tunneling in proteins, such as Ru-modified blue
copper azurin and cytochrome molecules from recent experi-
mental studies of Gray and co-workers,4,5 or for the description
of electron transfer in molecular monolayers in STM experi-
ments.6-8 The structure of the tunneling flow in the intervening
medium at the atomic level of resolution can provide an
important insight into the details of the mechanism of long-
distance tunneling.
In this paper the method of tunneling currents is applied for

study of electron-tunneling dynamics in quasi-one-dimensional
donor-bridge-acceptor systems that provide a model for the
description of electronic processes in molecular wires. Of our
particular interest are the following questions: how exactly does
an electron tunnel through an atom or a molecule, and what is
the precise meaning of “through-bond” and “through-space”
tunneling, the concepts frequently used in the description of
electron tunneling in proteins. Our method consists of an ab
initio electronic structure calculation of the spatial distribution
of tunneling currents occurring during the tunneling transition
in the system, when an electron tunnels from the one side of
the molecular wire to the other. The analysis is based on
calculation of two diabatic electronic states corresponding to
localization of a tunneling electron on donor and acceptor sites,
respectively. All electrons in the system are taken into account
at the Hartree-Fock level, and as such the method allows us
to examine the reaction of the valence electrons on the bridge
to the tunneling charge. The symmetry of the chosen system
allows a relatively simple way for a complete and detailed
analysis of the spatial distribution of the currents in the system.
The results reported below provide new insights into the nature
of long-distance electron tunneling in organic media. Also,
using the method described in this paper, the quality of the one-
electron approximation can be evaluated quantitatively.
The paper is structured as follows. In the next section we

introduce and discuss many-electron density and current density
operators and show how tunneling dynamics can be analyzed
with these operators. In section 3 main approximations
employed in the calculation of donor and acceptor wave
functions are discussed. In section 4 examples of calculations
of tunneling currents in various model systems are presented.
Section 5 closes the paper with some additional discussion and
conclusions.

2. Current Density in a Tunneling Transition

2.1. Current Density Operator. The current density ofN
classical particles with coordinatesxi(t) moving with velocities
Vi(t) ) x̆i(t) is given by

The quantum generalization of the above equation results in
the following expression for theoperatorof current density

wherem is the mass of particles, electrons in our case, andp̂i
is the momentum operator of theith electron, -ip∂/∂xi. The

hermitian symmetrization of the classical expression makes the
current density operator hermitian. The hermitian conjugated
operatorp̂i

+ is assumed to be acting on the left. The total
coordinate representation of the above expression thus has the
following form:

Thus, the current density has the form of a one-electron operator.
In the same representation the electron density operator reads

which is a one-electron operator as well. We can now apply
the standard technique to calculate matrix elements of these
operators for many-electron wave functions.
In ref 41 the second quantization method was used for the

analysis of tunneling currents. It can be shown that the above
operators and the current density operator discussed in ref 41
are the same. For example, applying the standard technique of
the field operatorsψ̂(x) andψ̂+(x) (see, e.g., ref 42) the above
operators can be rewritten in second-quantized form as

and

where summation is assumed over the repeating spin indexσ.
Thus, the current density discussed in this paper and in ref 41
are the same; however, the mathematical formalism of second
quantization required for treatment of the above expressions is
quite different from that of the present paper.
2.2. Tunneling Dynamics in Terms ofJB(x). The idea of

our method is to examine spatial distribution of the current
density in a tunneling transition. Suppose two resonant diabatic
electronic states|D〉 and |A〉 corresponding to localization of
the tunneling electron on the donor and on the acceptor
complexes, respectively,34 are coupled by the transfer matrix
element34

whereH is many-electron Hamiltonian of the system at fixed
nuclear coordinates,SDA ) 〈D|A〉 is the overlap of the two states,
andE0 ) 〈D|H|D〉 ) 〈A|H|A〉 is a common resonance energy
of states D and A. It is assumed that all other electronic states
are far from D and A states in energy, so that only two states
are involved in mixing and in dynamics.
Then, if initially the tunneling electron is localized in the

donor state,|D〉, later in time the total electronic wave function
will evolve into a linear combination of states|D〉 and |A〉 as
follows

j(x) ) ∑
i

N

δ(x- xi)Vi (2.1)

ĵ (x) )
1

2
∑
i

N [δ(x- xi)
p̂i

m
+
p̂i

+

m
δ(x- xi)] (2.2)

ĵ (x) )
p

2mi
∑
i

N [δ(x- xi)
∂

∂xi
-
∂

+

∂xi
δ(x- xi)] (2.3)

F̂(x) ) ∑
i

N

δ(x- xi) (2.4)

F̂(x) ) ψ̂σ
+ (x) ψ̂σ(x) (2.5)

jB̂(x) ) p
2mi

(ψ̂σ
+(x)∇ψ̂σ(x) - ψ̂σ

+(x)∇+ψ̂σ(x)) (2.6)

TDA )
〈D|H|A〉 - E0SDA

(1- SDA
2 )

(2.7)

|Ψ(t)〉 ) cos(TDAt/p)|D〉 - i sin(TDAt/p)|A〉 (2.8)
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We wish to examine current density and electron density in
such a state. For local density we find

where

The local density changes in time as follows:

On the other hand, the local current density in the same state
is

As expected, both density and local current are changing in time
periodically with the same frequency 2TDA/p.
In both expressions the time dependence is defined by the

factor sin 2θ. The rest of the expression gives an amplitude of
oscillation, which as a function of coordinates gives a spatial
distribution of the current/density in the whole system. Using
the same notation as in one-electron theory, the spatial part of
the current,JB(x), is introduced as follows:

Given this definition, the spatial distribution is

Using the conservation equation for current

and the expressions forF(x, t) and jb(x, t), we find a relation
between local density and current density in a tunneling system:

Finally, surrounding the donor complex by some closed
surfaceSD that will run sufficiently far from it so as to include
most of the charge density corresponding to tunneling electron
on the donor site and integrating the above eq 2.16 over the
volume comprised bySD, one finds a a useful relation between
tunneling matrix element and current density:

The same relation was found before in one-electron ap-
proximation.39,40 Equations 2.14 and 2.17 are most important
relations of this section that are used in our calculations
described in the following sections.
2.3. Calculation of JB(x). Suppose states|D〉 and |A〉 are

one-determinant many-electron functions, which are written in
terms of (real) molecular orbitalsæiσ

D andæiσ
A with correspond-

ing spin orbitalsøiσ
D andøiσ

A , whereσ is the spin index,σ ) R,
â. These orbitals are the optimized orbitals obtained from
Hartree-Fock (HF) calculations of states D and A. The D and

A states then have the following form:

Using standard rules for matrix elements of one-electron
operators,43 we have

for any operatorÔ of the form of eq 2.3 or eq 2.4. The overlap
matrix SAD in the above equation is given by

The determinant of this matrix is the overlap integral for states
A and D:

Much computational simplification in the evaluation of the
matrix elements of the form of eq 2.20 is gained if molecular
orbitals æiσ

A and æiσ
D of corresponding spin orbitals are

biorthogonalized.44-47 In this case the overlap matrix of states
A and D is diagonal

and for states withp orbitals inR spin andq orbitals inâ spin

and

Using the above results and substituting current operator eq
2.3 for Ô in eq 2.20 we find the following explicit form for
spatial part of the currentJB(x) defined in eq 2.14:

This expression is an obvious generalization of the one-
electron picture. Different pairs of orbitals contribute to current
density. If molecular orbitals in states D and A are biorthogo-
nalized, as we assumed above, currents of pairs of corresponding
(overlapping) orbitals of donor and acceptor states contribute
to current density. The smaller the overlap between corre-
sponding orbitals in donor and acceptor wave functions (i.e.,
the greater the change of an orbital in D and A states), the greater
the contribution of a given pair of orbitals. In most of the cases
(but not in all), it should be expected that only one orbital will
be significantly different in donor and acceptor states and an
electron occupying these orbitals in the initial and final states
of the system will give most of the contribution to the current.
It does not mean, however, that other electrons are not important.
First of all, other electrons will give some direct contribution
owing to electron relaxation effectsstheir orbitals will be shifted
to some degree owing to polarization effectssand also other
electrons contribute most strongly indirectly since the important

F(x, t) ) 〈Ψ(t)|F̂(x)|Ψ(t)〉 ) cos2(θ) 〈D|F̂(x)|D〉 +
sin2(θ) 〈A|F̂(x)|A〉 (2.9)

θ )
TDA
p
t (2.10)

∂F(x, t)
∂t

)
TDA
p
(〈A|F̂(x)|A〉 - 〈D|F̂(x)|D〉) sin 2θ (2.11)

jB(x, t) ) 〈Ψ(t)| jB̂(x)|Ψ(t)〉 ) i〈A| jB̂(x)|D〉 sin 2θ (2.12)

jB(x, t) ) -JB(x) sin 2θ (2.13)

JB(x) ) -i〈A| jB̂(x)|D〉 (2.14)

∂F̂(x)
∂t

) -div jB̂(x) (2.15)

TDA
p
(〈A|F̂(x)|A〉 - 〈D|F̂(x)|D〉) ) div JB(x) (2.16)

TDA ) -p∫SDdBs JB(x) (2.17)

|D〉 ) |ø1R
D ...øpR

D ø1â
D ...øqâ

D 〉 (2.18)

|A〉 ) |ø1R
A ...øpR

A ø1â
A ...øqâ

A 〉 (2.19)

〈A|∑
i

Ô(i)|D〉 ) det(SAD) ∑
ij ,σ

(SAD
-1)iσ,jσ〈æjσ

A |Ô|æiσ
D〉 (2.20)

(SAD)iσ,jλ ) 〈øiσ
A |øjλD〉 ) δσλ〈æiλ

A|æjλ
D〉 (2.21)

SAD ) 〈A|D〉 ) det(SAD) (2.22)

〈æiσ
A |æjσ

D〉 ) δijsi
σ, (2.23)

det(SAD) ) ∏
i

p

si
R∏

j

q

sj
â (2.24)

(SAD
-1)iσ,jσ ) δij(si

σ)-1, σ ) R, â (2.25)

JB(x) ) -
p

2m
det(SAD)∑

i,σ

1

si
σ
(æiσ

A(x)∇æiσ
D(x) - æiσ

D(x)∇æiσ
A(x))

(2.26)
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orbitals are determined self-consistently by all other electrons
in the system. Finally, many electrons can contribute to current
owing to the exchange effects.
We can now express the currents in terms of the atomic basis

functions of which molecular orbitals are built. Each of the
molecular orbitals are assumed to be found in a HF calculation
as a linear combination of atomic basis set functionsφµ

whereK is the total number of atomic orbitals in the basis set
of the system.
Then, in terms of atomic orbitals the expression for currents

takes the following form

where the density matrixBµν
σ is defined as follows

where summations are limited byp for R spin and byq for â
spin.
Using antisymmetry of the above expression (eq 2.29) in

indicesµ andν, one finds the final expression for currents

where det(SDA) is given by eq 2.24 andBµν
σ is defined by eq

2.30.
Similarly, the overlap matrices can be expressed in terms of

the overlap integrals of the atomic orbitals. These expressions
have very simple structure and are directly suitable for program-
ming.

3. Choice of Donor and Acceptor Wave Functions

In this section we discuss the approximations employed in
the evaluations of the donor and acceptor wave functions and
several related issues of the numerical accuracy of calculations
of the tunneling currents.
All of the calculations discussed in this paper were performed

on symmetric systems. In such a case there exist two closely
lying eigenstates, which we will callψa andψb, with energies
Ea andEb, respectively. The state with the lowest energy is
the ground state. These two states correspond to the usual
symmetric and antisymmetric combinations of the donor and
acceptor states, and the splitting between the two states is twice
the value of the coupling,∆E ) |Eb - Ea| ) 2|TDA|. We
assume that other electronic states are much higher in energy

thanψa andψb, i.e.

whereEi are energies of some other (excited) electronic states
in the system. It is clear that the condition above can always
be satisfied at large distances between donor and acceptor since
∆E decreases exponentially with the distance.
The precise meaning of|D〉 and|A〉 states is defined by the

following equations:

Thus, we assume that at timet ) 0 a nonstationary state is
created from the two eigenstates of the system. In the systems
of our interest the|D〉 state will be localized on one end of the
molecule and the|A〉 state on the other. In the subsequent
evolution fort > 0, the system will experience quantum beats
between states D and A with the frequency 2TDA/p, as eq 2.8
states.
We notice that|D〉 and |A〉 states so defined are exactly

orthogonal, owing to orthogonality ofa andb states, and the
tunneling matrix element defined by eq 2.7 is given exactly by

We assume thatEa is the lowest energy andψa is symmetric,
which means that the tunneling matrix element is negative. If,
on the other hand, the antisymmetric state b has the lowest
energy, then the tunneling matrix element is positive. The
currents defined in the previous section will change direction,
which formally corresponds to|A〉 being the donor state.
If the statesψa andψb were easily available, then the|D〉

and |A〉 states could be exactly determined using the above
definition. In fact, for symmetric and relatively simple systems,
such as in the present discussion, the ground and the first excited
state can be found relatively easily. However, in a more general
case the statesψa andψb are not available (for a simple reason
that the exact configuration of the nuclei and of the external
field resulting at the degeneracy of the donor and acceptor states
is not known), and the value of the tunneling matrix element
cannot be determined using eq 3.4. Hence, in general, the
strategy of calculations is to find an approximation for|D〉 and
|A〉 states and then to use eq 2.7 for matrix element evaluation.
These approximate states are in general not orthogonal, and there
exists a small overlapSDA between them.
In a general case the approximate method of finding|D〉 and
|A〉 states would be to consider two different configurations of
the system that correspond to an electron localized on donor
and acceptor complexes and then to solve the Schro¨dinger
equation (i.e., to find ground state) separately for both ap-
proximate|D〉 and |A〉 states. Both configurations, of course,
should be as close as possible to the actual transition-state
configuration. This method is based on the idea that the
Hamiltonian of the system in the D configuration will be close
to actual Hamiltonian in the region of the donor complex and
that of the A configuration will be close to the actual Hamil-
tonian in the region of the acceptor. Then the approximate wave
functions will be close to what one understands intuitively by
donor and acceptor electronic states.

æiσ
D ) ∑

µ

K

Dµi
σ
φµ, (2.27)

æjσ
A ) ∑

n

K

Aνj
σ
φν (2.28)

JB(x) ) -
p

2m
det(SAD) ∑

µν,σ

Bµν
σ (φµ(x)∇φν(x) - φν(x)∇φµ(x))

(2.29)

Bµν
σ ) ∑

i)1

(p,q)

Aµi
σ 1

si
σ
Dνi

σ (2.30)

JB(x) ) JBR(x) + JBâ(x) (2.31)

JBR(x) ) -
p

2m
det(SDA) ∑

µ,ν)1

K

(Bµν
R - Bνµ

R )φµ(x)∇φν(x) (2.32)

JBâ(x) ) -
p

2m
det(SDA) ∑

µ,ν)1

K

(Bµν
â - Bνµ

â )φµ(x)∇φν(x) (2.33)

min(Ei - Ea,b) . ∆E (3.1)

|D〉 )
|ψa〉 + |ψb〉

21/2
(3.2)

|A〉 )
|ψa〉 - |ψb〉

21/2
(3.3)

TDA ) (Ea - Eb)/2 (3.4)
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The quality of the wave functions in the whole space is an
important issue since tunneling matrix elements and tunneling
currents are exponentially small and hence are expected to be
sensitive to minor changes of the Hamiltonian. We therefore
formulate the approximation for|D〉 and |A〉 states more
accurately.
The exact state|D〉 defined by eq 3.2 satisfies the following

equation

which can be written as

whereE0 is the midpoint betweenEa andEb

E0 is what is usually assumed by the tunneling energy. This
energy is negative and usually is of the order of several
electronvolts.
In coordinate representation eq 3.6 can be rewritten as

follows:

The expression in parentheses in the above equation can be
viewed as an effective HamiltonianHD for the functionψD. It
is clear that in the region of the donorψA is small, of the order
of |TDA/E0|, while ψD is large (order of unity in atomic units).
TDA itself is very small compared with electronic energies of
H, hence the effective HamiltonianHD for ψD in the region of
the donor site is indeed close toH. Further analysis of simple
1-D models shows that the second term in the effective
Hamiltonian can be neglected also in the barrier region, and
only in the acceptor well it is of the order ofH itself. Hence,
the effective Hamiltonian for exactψD is significantly different
from the original HamiltonianH only in the acceptor well.
Thus, solving the equation forψ′D with some effective

HamiltonianH′D, which coincides with, or is very close to,H,
everywhere in space except in the acceptor well, can give an
accurate representation of the actualψD in the region of the
donor and under the barrier, however, not in the acceptor well.
A similar result can be obtained for the effective Hamiltonian
H′A and for an approximate functionψ′A.
In our calculations and in earlier work of Newton34, the

effective HamiltoniansH′D andH′A were obtained by applying
an external electric field directed along the line connecting donor
and acceptor atoms. This field breaks the symmetry of the
system and leads to localization of the electron on donor or
acceptor sites. The field in this case should be sufficiently
strong to decouple states D and A and to prevent their mixing,
but not too strong to prevent the change of the potential barrier
separating the donor and acceptor wells. Specifically, the
condition can be formulated as follows

wheree is the electron charge,ε is the intensity of the applied
field, andLDA is the distance between donor and acceptor atoms
(or complexes). The right-hand side of this inequality is the
minimum distance between tunneling energy and excited states
on the bridge. Since the tunneling matrix elements of our
interest are of the order of hundreds of inverse centimeters or

less and the barriers are of the order of several electronvolts
and in any case|TDA| , min|E0 - Ei|, this condition can be
easily satisfied. If the condition 3.9 is satisfied, the calculated
properties of the system, such as tunneling matrix elementTDA
and others, should be independent of the particular value ofε.
Once the approximate donor and acceptor wave functions are

found, the calculation usually proceeds with the evaluation of
the tunneling matrix element by eq 2.7, where instead of exact
ψD andψA their approximationsψ′D andψ′A are used.
We notice one seemingly striking problem with this method

of evaluation ofTDA. Sinceψ′D is much different from the
exactψD in the region of the acceptor, andψ′A much different
from the exactψA in the region of the donor, their product is
ill-defined in most of the regions of the space. SinceTDA is
defined by the integral of the product ofψ′D andψ′A, one might
ask how is it possible then to get an accurate value ofTDA
without knowing exact functionsψD andψA?
Our reformulation of the tunneling problem in terms of the

currents helps to explain the puzzle. Equation 2.17 for matrix
element in terms of the tunneling currentJ is equivalent to the
conventional formula; however, since it involves only surface
integral, instead of volume integral as in eq 2.7, it shows that
there are significant cancellations in the volume integral and
the net result forTDA depends only on the value of the donor
and acceptor wave functions and their derivatives on the surface
separating donor and acceptor in the region of the bridge.
The nature of these cancellations is already obvious from eq

2.7. In this equation the volume integral in the region of the
acceptor site is zero, sinceψ′A satisfies the Schro¨dinger
equation

In the rest of the space, the integrand in the volume integral
turns out to be a div of some field (current) and therefore, using
Gauss’ theorem, can be written as a surface integral. The
cancellations are due to the fact the integrand in the volume
integral has a form of a divergence of some field.
Thus we arrive at a surprising conclusion that the wave

functions that are apparently incorrect in most of the regions
of space can give, nevertheless, an accurate value for the
tunneling matrix element. The reason is that the tunneling
matrix element is determined only by the values of the wave
functions in the narrow region under the barrier, where our
procedure for evaluation ofboth functions ψ′D and ψ′A is
sufficiently accurate.
In our calculations a weak electric fieldε was applied to the

system; two opposite directions of the applied field resulted in
two ground states that are localized on the two atoms on the
opposite sides of the molecules and have exponential tails
extending into the bridge. These two states correspond to donor
and acceptor. This procedure results in molecular orbitals of
D and A states, which are then biorthogonalized. After that
current density was calculated as described in the previous
section. The wave functions were determined using GAUSS-
IAN-94 electronic structure program.48

4. Numerical Examples of Current Density Calculations

In this section we present results of calculations of tunneling
currents in several model resonant charge exchange systems
M-(B1...Bn)-M+. Each of the systems consists of an atom M
exchanging an electron with its ion M+, and M and M+ are
separated by a linear array of additional atoms B1...Bn (or ions)
located on the straight line connecting M and M+. The atoms

H|D〉 ) (Ea|ψa〉 + Eb|ψb〉)/2
1/2 (3.5)

H|D〉 ) E0|D〉 + TDA|A〉 (3.6)

Ea,b) E0 ( TDA (3.7)

(H - TDA
ψA(x)

ψD(x)) ψD(x) ) E0ψD(x) (3.8)

|TDA|, eεLDA , min|E0 - Ei| (3.9)

Hψ′A(x) ) E0ψ′A, x ∈ ΩA (3.10)
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between donor M and acceptor M+ play the role of the bridge.
Our goal here is to examine tunneling currents in such systems
using the method discussed in the previous sections and to
answer few principal questions, such as the following: (1) how
does a resonant exchange between many-electron atoms/ions
occurs through space; (2) what exactly happens when an electron
tunnels through an atom of the bridge or a series of the atoms
in the bridge, and (3) how accurately can one describe the tails
of the atomic wave functions that one needs for the description
of tunneling currents with the methods of quantum chemistry,
i.e., using standard Gaussian basis functions.
4.1. Tunneling through Space.We begin the discussion of

the numerical results from the simplest case of a system of two
protons exchanging an electron. (For H2

+ system, there exist
an analytical solution, and the accuracy of numerical calcula-
tions, as well as the quality of some approximations, can be
easily evaluated.) The distance between the protons was chosen
to be 8 Å. The main challenge in this system was to optimize
the Gaussian basis to cover such unusually large distances.
Figure 1 shows donor and acceptor wave functions,ψ′D,A,

current density,Jz(z), and the total flux,I(z), along thez-axis
connecting the two ions of H2

+ system. The total flux, or total
current, is the integral of the current densityJz over the plane
perpendicular to thez-axis and crossing it at pointz.

The basis set was optimized (by minimizing the energy of
donor and acceptor states) and contained eight s-, three p-, and
one d-Gaussian shells. The largest exponent was approximately
2.5× 102 and the smallest one 0.05. Thus, in principle, the

two basis sets together could cover the whole range between
donor and acceptor. One should remember, however, that the
donor and acceptor wave functions that we are using,ψ′DA,
give poor approximation for the exact functions in the vicinity
of the partner’s well, as discussed in the previous section. In
a separate calculation, by directly evaluating symmetricψa and
antisymmetricψb states, we have checked that indeed this is
the case.
The behaviors of the wave functions in the whole range

between donor and acceptor are important since the current at
a given point in space is determined by the product of one
function and the derivative of the other at that point. The
features of the tails of the wave functions are too small to be
noticeable in Figures 1a,b.
Figure 1c shows seemingly irregular behavior of the current

in the vicinity of each of the nuclei. The irregularities are due
to different Gaussians with large exponents covering the very
core region of the nuclei. It should be recalled that the current
in this region is not well-defined, because of the problem with
the tails of the wave functions (in the very vicinity of the other
well) discussed above.
On the other hand, in the regionbetweenthe two protons,

i.e., under the barrier, the tails of our wave functions, as well
as their multi-gaussian representation, is of satisfactory quality.
The evidence for this comes from Figure 1d, which shows the
behavior of the total current as a function of thez-coordinate.
The key test of the quality of our results for current in the

region of the barrier is based on our eq 2.16, which seems to
be of fundamental importance. It states that the divergence of
the tunneling current density at a given point is proportional to
the differential density of donor and acceptor states at that point,
with the tunneling matrix elementTDA being the proportionality
coefficient. The right- and the left-hand sides of this equation
can be calculated for arbitrary functionsψD andψA; however,
it is only when these functions are exact donor and acceptor
states, in the sense discussed in the previous section, that the
right- and the left-hand sides will coincide at all points in space.
We notice that one side of this equation containing differential

density is everywhere well-defined, even with our approximate
functions, while the other is not. The reason for that is that in
the very vicinity of the either of the nuclei, where the problem
with the tails of the wave function arises, the large and well-
defined density, sayFD, is so much greater than the small and
ill-defined counterpart,FA, that the value of the difference,FD
- FA, is completely defined only by the large and well-defined
term (order of unity). On the other hand, the side of the equation
containing currents is much more sensitive to the quality of the
wave functions. The small parameterTDA determines the
magnitude of the numerical values that are compared in the
right- and the left-hand sides of the equation.
Instead of checking balance of the right- and the left-hand

sides of eq 2.16 everywhere in space, we examine this equation
in its integral form. If we integrate eq 2.16 over the volume of
half-space limited from the -∞ side by a planeSz perpendicular
to thez-axis

whereFA(xb) and FD(xb) are electron densities in the A and D
states andI(z) is the total current though the surface defined by
eq 4.1. We assume that the donor is placed at negativez (-4 Å
in Figure 1) and the acceptor is at positivez along thez-axis.
The qualitative analysis of eq 4.2 is straightforward. In the

vicinity of the donor site, the donor density always dominates

Figure 1. (a, b) Donor and acceptor wave functions (along the
internuclear axis) in the H2

+ system. The states were localized by
applying an electric field along the symmetry axis of the molecule.
Donor and acceptor are separated by 8 Å. An optimized basis set was
used (see text). (c) Current density for H2

+ along the internuclear axis.
(d) Total flux as defined by eq 4.1.

I(z) )∫Szdsb JB(xb) )∫∫dxdy Jz(x, y, z) (4.1)

I(z) ) -
TDA
p
∫-∞zdV(FD(xb) - FA(xb)) (4.2)
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over that of the acceptor. Since density is everywhere positive,
the integral in the above equation, as a function of coordinate
z, starts from zero at -∞ and reaches its maximum value -TDA
in the region somewhere between donor and acceptor. Further
shift of the planeSz toward the acceptor will lead to the opposite
behavior, and the integral will become again zero asz f ∞.
For symmetric systems, such as ours, the functionI(z) is even.
In Figure 1d the total currentI(z) calculated by eq 4.1 is

shown. It is seen that the qualitative behavior ofI(z) indeed
corresponds to that described above. The small deviations from
the monotonous behavior that are seen in the figure are due to
the deviation of our wave functionsψ′D and ψ′A from their
exact values. As we remarked earlier, there are two sources of
errors in the wave functions. First is that our effective
Hamiltonians,H′D andH′A, employed in calculation ofψ′D and
ψ′A are incorrect in the vicinity of the second nucleus. And the
second is that our Gaussian basis is not capable of capturing
all details of exponential tails of the wave functions in the region
of the barrier. Fluctuations in the region between donor and
acceptor are due to this effect. These fluctuations, however,
are relatively smallsin the range of 10-20%.
Another test of the quality of our calculations is to compare

the saturated value of the total current with its theoretical value,
-TDA. For this end for H2

+ and other simple models of this
paper, the matrix element was determined directly as half of
the splitting between energies of antisymmetric and symmetric
states of the unperturbed systems (i.e., without an electric field).
One state of these two is the ground state, and the other is the
first excited state. The two states were determined in a SCF
procedure in a one-determinant approximation with the same
basis set used for current calculations. We find that the two
matrix elements, one from the direct calculation, another from
the saturated value of the current in the barrier region, coincide
within 10-20% or better (see below). Results for H2

+ and
some other systems are shown in Table 1 and further discussed
below.
Given the approximate nature of the wave functions, the

agreement within 10-20% of these two methods is rather
surprising. Because of the sensitivity of the tunneling matrix
elements to exponentially small tails of the wave functions,
neither method can be regarded a priori as reliable. Comparison
of two completely different methods of calculations sheds some
light on the accuracy of such calculations.
In Figure 2 results of similar calculations are shown for the

Na2
+ system. It is seen that the many-electron nature does not

add anything qualitatively new. We have done also similar
calculations on Li2

+. The strongest contribution to tunneling
current in these systems was found to be due to the outermost
electron moving in the effective field of nuclei and that of other
electrons in the system. In Figure 3 the distribution of the
tunneling current density for the Na2

+ system is shown.
4.2. Tunneling through a Bridge. How Does an Electron

Tunnel through an Atom? Here we discuss results of our
calculation of the H-(He)n-H+ system, in which two protons
exchange an electron via a string of helium atoms. Two basis
sets used in the calculations were 6-311G and 6-311++G(2df,-

2p). The extended basis set gives essentially the same results
as 6-311 but with better resolution of small details of the
currents.
We found that the transition between highest occupied orbitals

carries most important information about the tunneling process.
This is an indication that the one-electron description of the
tunneling process is in principle possible, provided the interac-

TABLE 1: Comparison of TDA Calculated with the
Tunneling Flux Method and as a Direct One-Half Splitting
of the Symmetric and Antisymmetric States

molecule TDA (cm-1) ∆E/2 (cm-1)

[H-H]+ 0.59 0.67
[Li-Li] + 359.0 447.0
[Na-Na]+ 502.0 629.0

Figure 2. (a, b) Donor and acceptor wave functions (along the
internuclear axis) in the Na2

+ system. Details are the same as in Figure
1. (c) Current density for Na2

+ along the symmetry axis of the
molecule. (d) Total flux as defined by eq 4.1.

Figure 3. Distribution of tunneling current density in Na2
+ calculated

using the standard 6-311G basis set. All units are in bohr (a0). Donor
and acceptor are separated by 7 Å.
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tion of “the tunneling electron” with other electrons (including
the exchange interactions) are properly taken into account. The
internal orbital currents reflect the polarization response to the
tunneling charge. In the total current, the polarization compo-
nent usually masks some important details of the current
associated with the long-distance electron transfer. We therefore
focus in the following discussion on the currents originating
between the HOMO’s of the donor and acceptor states. The
biorthogonalization procedure was found to introduce only small
changes of the molecular orbitals since the original orbitals taken
from the output of the Gaussian calculation already have very
small overlaps; i.e., these orbitals are already almost biorthogo-
nal.
Figure 4 shows distribution of tunneling currents in a system

with one bridge atom. The data allows one to gain insight into
the nontrivial question of how exactly a tunneling electron
penetrates a bridge atom. The results are counterintuitive. The
expectation is that owing to the Pauli exclusion principle, the
tunneling electron will try to avoid the repulsive core region of
the bridge atom. However, we find that the very same repulsion
results in antibonding mixing of the wave function of the
tunneling electron and that of the core and, as a result, leads to
a significant current directly through the center of the bridge
atom. Figure 5 shows the same data as in Figure 4 but
calculated with the extended basis set. Results, as seen, are
essentially identical with those of a more primitive basis set.
The polarization currents in the system flow in the opposite

direction to that of the tunneling electron. These currents are
localized on the atoms of the bridge and are due to a “shift” of
electron density on these atoms resulting from the long-range
Coulombic interaction with the tunneling electron.
In Figure 6 the initial wave function of the tunneling electron

is shown for a H-(He)n-H+ system withn ) 11. A perfect
exponential decay of the amplitude of the initial function on
the bridge atoms with increasing distance is worth noticing. Such
a perfect exponential dependence with distance obviously is a
result of the homogeneous (and periodic) nature of the bridge.
It is interesting that the boundary effects show up only at the

very vicinity of the donor and acceptor atoms. The numerical
values of the wave function were verified with two different
basis sets.
Figure 7 shows the total flux through a dividing surface along

the axis connecting donor and acceptor atoms in a representative
system withn ) 9. As was explained above in the text, the
nonmonotonic behavior of this function is in part due to the
deviation of the wave functions found in the variational
procedure from those that are exact solutions of the Schro¨dinger
equation. the most important part of the flux dependence shown
in Figure 7 is roughly in the middle of the bridge. According
to theory presented above, the saturated value of the flux in the
region between donor and acceptor should coincide with the
value of the tunneling matrix element, eq 2.17. In Figure 8 a
comparison is shown of the matrix elements calculated with eq
2.17 with those directly evaluated by the splitting of the
symmetric and antysymmetric states in the unperturbed system.

Figure 4. Tunneling currents in a system [H-(He)n-H]+ with one
bridge atom,n ) 1. Donor and acceptor are separated from the bridge
atom by 2.5 Å.

Figure 5. Same as in Figure 4, but calculated using a 6-311++G-
(2pd,2f) basis set.

Figure 6. Distance dependence of the donor (acceptor) wave function
in the [H-(He)n-H]+ system,n ) 11, along the symmetry axis of the
molecule. Donor and acceptor (H atoms) are separated from the bridge
by 2.5 Å. He atoms within the bridge are separated by 1.5 Å. The total
separation of donor from acceptor atoms is exactly 20 Å. The ln of the
square of the wave function decays linearly with distance with a decay
constant of 0.9 a0

-1.
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As is seen from the figure, there is a perfect agreement between
calculated values of the matrix elements with two totally
different methods. For a system of 11 bridge atoms, the splitting
of symmetric and antisymmetric states was so small that it was
not possible to determine it within the numerical accuracy of
the energy calculations. Yet the method based on eq 2.17 still
was able to yield the magnitude of the tunneling matrix element,
which apparently is in line with the other calculations shown
in this figure. The perfect exponential dependence of the
tunneling coupling in these linear systems is in agreement with
the expected behavior.
It is worthy to mention that the tunneling matrix element in

H-(He)n-H+ systems is positive. That is, the ground state
HOMO is antisymmetric. It appears at a first glance that the
wave function antisymmetry means that the He atoms would
try to block the tunneling electron, and yet it is clearly seen

from the results of the calculations that a string of 11 He atoms
can propagate the tunneling electron over distances as large as
20 Å. This remarkable phenomenon is most clearly presented
in Figure 9 where almost a constant stream of the tunneling
current from donor to acceptor through the bridge of 11 atoms
is clearly seen. Such tunneling streams obviously exist in
electron-transfer proteins and make what is called the “tunneling
pathways”.17

5. Conclusion

We have presented the first full ab initio implementation of
the method of tunneling currents for the description of long-
distance electron-transfer reactions. Results were obtained for
[H-(He)n-H]+ model systems, withn ) 0-11. These and
other systems that we have examined allow us to draw the
following conclusions. The method is capable of providing new
insights into the process of long-distance tunneling with its
detailed, essentially subatomic, description of the tunneling
process. A satisfactory description of the through-space tun-
neling currents over distances up to 8 Å can be achieved with
specially optimized basis sets. In calculations of through-bond
interatomic tunneling currents, when the distances between
atoms is in the range of 1.5-2.5 Å, standard basis sets can be
used. The tunneling currents consist of the contribution of the
donor and acceptor highest occupied molecular orbitals and the
polarization currents originating from the other orbitals in the
system. An excellent agreement of the method of tunneling
currents with the results of direct evaluation of the transfer
matrix element is obtained when the currents of the HOMO’s
are used in the calculation. The biorthogonalization of the
orbitals of donor and acceptor states does not change signifi-
cantly results of the calculations.
The method described in this paper provides a detailed

description of electron delocalization dynamics and as such can

Figure 7. Total tunneling flux along the molecular symmetry axis,z,
in the [H-(He)n-H]+ system. Here the system is composed of a nine-
atom helium bridge separated by 1.5 Å and coupled to donor and
acceptor H atoms at a distance of 2.5 Å. The flux was calculated using
HOMO before (solid line) and after (dashed line) the biorthogonaliza-
tion.

Figure 8. Distance dependence of electronic couplingTDA in [H-(He)n-
H]+ system with n ) 3-11. Two filled symbols correspond to
calculations using the theory of the present paper. Squares and circles
correspond to results obtained with and without biorthogonalization of
molecular orbitals of donor and acceptor states. The open triangles
correspond to calculated electronic coupling using the direct method
of evaluating the splitting between symmetric and antisymmetric states.
The distance dependence of the coupling is exponential,TDA ) A exp-
(-â‚R/2). The attenuation factor of the couplingâ ) 0.9 a0-1, which is
the same as that of the wave function, Figure 6.

Figure 9. Tunneling currents for a system with an 11-atom bridge.
Donor and acceptor (H atoms) are separated from the bridge by 2.5 Å.
He atoms within the bridge are separated by 1.5 Å. Here the donor is
at the bottom of the figure. All length units are in bohr (a0). The
extended 6-311 basis set was used.
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be a useful tool in the analysis of long-distance electron
tunneling in proteins or in other organic materials with complex
structural organization. In particular, the quality of the previous
one-electron theories will be possible to test now against ab
initio calculations of the tunneling pathways. Also, the effect
of dynamics16 and disorder20 of protein matrix on long-distance
tunneling in biological systems will now be possible to address
at a more accurate level of calculations.
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